Myths of Methodology

Dispelling some commonly held beliefs about the
software development process and IT innovation.

January 2005
Author: Dan Drislane

FRONTIER
STRATEGIES

frontier-strategies.com
info@frontier-sirategies.com

Copyright © 2005 Frontier Strategies, Inc. All Rights Reserved

No part of this work covered by copyright herein may be reproduced in any form or by any means—
graphic, electronic, or mechanical—including photocopying, recording, scanning, taping, or storage in an
information retrieval or computer system, without prior written permission of the copyright owner.

This paper originally published in a slightly different form at Enterprise Agility, Inc. (August 2002).
enterprise-agility.com

Frontier Strategies, Inc.

1106 West Park Street, Suite 444, Livingston, Montana 59047-2955 USA
Phone: (+01) 248-207-9020 Fax: (+01) 406-794-0506

E-mail: info@frontier-strategies.com

frontier-strategies.com

[050100101: FS_Myths_of_Methodology v1.docx]

Myths of Methodology

Introduction

| have wanted to write a paper on methodology for years. Since 1982, when | graduated from college, |
have been inundated by the M-word. While working at General Electric, there were a half-dozen
methodologies for all manner of engineering and manufacturing, though to be fair, no software
development methodologies were in use at my facility at the time. During my seven years at Digital
Equipment Corporation, | used at one time or another: three software development methodologies; a
Yourdan-based analysis methodology; a business process engineering methodology called TOP; a couple
of software integration platforms that just screamed for a methodology (for which | didn’t have to wait
long); and a host of vendor- or client-mandated standards, including IDEF (the U.S. Air Force), General
Motors’ and EDS’ methods. In my three years at Sun, though | wasn’t directly involved in software
development during this time, | got a liberal dose of the emerging methodologies of the time, including
Ernst and Young’s Fusion, Andersen Consulting’s Method/1, Ford’s proprietary life-cycle methodology,
and the revised and enhanced IDEF specs (including how defense contractors were “elaborating” these).
These efforts hatched years before object-oriented initiatives—including today’s quite popular Rational
Unified Process—gained momentum and the Software Engineering Institute at Carnegie Mellon weighed
in on best practices and methodology—or what | euphemistically call the Big M.

So it was this collective alphabet soup of how to do something in an “organized manner and still be
confused” that inspired me to think about methodology from the practitioner perspective. Though | was
certainly convinced over the years that using a methodology to design and produce something—a
turbine, a car, a software application—was a good idea, | was continually disappointed that they were so
hard to understand and implement successfully. During those days with DEC and Sun, with the exception
of the well-meaning corporate evangelists that would drop in to give us the religion, my methodology
exposure, so keenly observed in colleagues and clients, was more punctuated with dread, denial and
cynicism than gun-ho passion. Complaints about methodology were rampant: “It’s too much
documentation.” “Who has time to read the manuals?” “By the time we do it right, out customer will be
out of business.” Why could such a great idea go bad so often?

This paper is about why software development methodologies don’t work and why they sometimes do,
including a few ideas about how to turn around your own methodology efforts. Often, methodologies
don’t work because managers and IT professionals hold onto beliefs, practices and organizational
paradigms that no longer fit the modern software development organization and the processes that
help support it. | call these miscues the myths of methodology.

Methodologies don’t I make no claims that | am a methodology expert or a software
work because managers development guru. Many of my observations are simply from twenty
CURNLNIQEESIERRIVEE | cors of personal experience. Computer scientists or genuine
onto beliefs, practices
=0 I methodologists might decide my findings are over-arching. In defense,
and organizational o . . .
my only claim is that | am a software professional trying to practice my

paradigms that no longer :
fit the modern software craft, and hence, a simple robust software development methodology

development that will make my job easier and my clients more successful is the
organization and the meal ticket | want. So if | haven’t convinced you to drag-and-drop this
processes that help paper into the recycle bin, then perhaps a few of the pragmatic tips

SIS N, that follow may help you successfully implement your own Big M.

© 2005 Frontier Strategies, Inc. All rights reserved. 3

Myths of Methodology

Myth 1: Methodology as Best Practice

Here, we have a crisis of terminology. Why should you care whether a software development
methodology is a best practice? It’s just different terminology, you say? For one, methodology is not a
best practice in and of itself. It is the collected sum of best practices that, when carefully orchestrated,
create synergistic, tangible value to an organization. Methodology is also a business process that an
organization executes. The process is a collection of best practices (call them methods or tasks if you
wish) that are organized to produce value at one or more points along the process path, or if you've
been reading the latest management texts, the value chain. If you still think | am mincing words here,
then consider how you might interpret an engineer from Ford Motor Company telling you that Job 1 is
their vehicle development best practice. Such a statement tells you nothing about how Ford builds cars.
To learn about vehicle development and assembly, you’d have to peel back the Job 1 skin and look at

METHODOLOGY = Z Best Practices

PROJECT MANAGEMENT INTEGRATION DESIGN REVIEW

REQUIREMENTS ELICITATION & REFACTORING ARCHITECTURE CONFORMANCE VALIDATION
USE CASE/ USER STORY DEVELOPMENT ROUNDTRIP ENGINEERING

CONTEXTUAL DESIGN / INQUIRY TEST CASE DEVELOPMENT
PAIR-PROGRAMMING USER EXPERIENCE TESTING

STRUCTURAL MODELING (Analysis/Design Level) CONFIGURATION MANAGEMENT
BEHAVIORAL MODELING (Analysis/Design Level) PROJECT COLLOQUIUM

n-TIER DESIGN & IMPLEMENTATION <] PROJECTARTIFACT PACKAGING & ARCHIVING

ITERATIVE/ INCREMENTAL DEVELOPMENT "4l (new practices discovered)

Figure 1: A successful IT methodology is usually a collection of successful best practices that work together to yield value to
the organization. The practices listed above are typical candidates organizations may choose, but aren’t an exhaustive list.

some of the dozens of work practices—engineering, manufacturing, and assembly best practices—that,
together, comprise the Job 1 methodology. Though Job 1 has been the anthem for Ford for a good
decade now, it has evolved and changed as new technologies and better tools and methods for
designing and building cars have proven themselves. In essence, Ford is constantly reinventing its
methodology as work practices are graduated into best practices.

So, why is this distinction important for the IT organization? Because too often IT folks treat
methodology as a singular way of doing business when they should be looking at the smaller scale best
practices that comprise the larger methodology, as illustrated in Figure 1. The idea here is not unlike a
sports franchise buying the talent needed to produce a winning record and get a shot at the playoffs.
Great pieces make for an excellent whole. Proven best practices can make for a successful methodology.
Instead of adopting a ready-to-use methodology (we will discuss why this is a bad move), IT
organizations should focus on developing competency in best practices first. There are sound reasons
for doing this.

4 © 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

For one, lifecycle methodologies are fairly involved mechanisms that are difficult to conquer all at once.
Developing and mastering a business process, from the user’s vision to delivery of an application, can be
cumbersome and unwieldy. It is difficult enough having an experienced development team keep their
heads on straight during any one “movement” of a project without having to learn the entire
“symphony” that is the lifecycle methodology. Tackling smaller best practices—say, Design Review and
Configuration Management—is a better bet.

Second, most software development best practices focus on a type of work for a certain role or two in
the team. For example, Structural Modeling might be performed by a business or system analyst, while
Roundtrip Engineering is usually the providence of the programmer-analyst. This natural tendency
toward role and responsibility in the software development lifecycle makes learning of role-aligned best
practices easier and more contained. Sure, there are best practices that occupy a broader swath of the
lifecycle—Iterative & Incremental Development and Architecture Conformance Validation (from Figure 1)
are two obvious examples—but they can be implemented in phases.

&— SYSTEM DEVELOPMENT LIFE-CYCLE METHODOLOGY ——>

| ARARERENERERENEN

BEST PRACTICES

ARJRABRPRRDRAN]

Ca@C@20DPD

PEOPLE, METHOD & TOOL

\ ENABLERS /

Enablers can be retired or
introduced as needed.

Figure 2: Methodology depends on best practices that are enabled by people, methods and tools.

Third, many of today’s software development best practices are more directly coupled to software
productivity tools and other advances in technology. A good example of this trend is the popular
strategy of implementing an n-tier architecture. Separation of concerns and independence of
technology, two benefits of n-tier, can be applied to methodology. As a business process, software
development methodology can be functionally and organizationally insulated from the tools and
techniques that enable the best practices that together work to enable the methodology. Figure 2
illustrates that, as new tools are introduced into the marketplace or developed in-house, they can be
deployed as enablers to one or more best practices. A recent example of this is Rational Software
Corporation’s introduction of XDE', which enables programmers to perform roundtrip engineering
quickly and easily. A company building their methodology around the Rational Unified Process (RUP) can
now evaluate XDE as a likely Roundtrip Engineering enabler.

! XDE = Extended Development Environment. For more information, go to www.ibm.com/software/rational/.

© 2005 Frontier Strategies, Inc. All rights reserved. 5

Myths of Methodology

,—> RELEASE
ADVANCE

(11 7
A Four Steps to “best
i » PACKAGING
Best Practices [e B LIS
0 A rorus
CICJ SCENARIOS FOR /
USE OF PRACTICE
S ADVANCE
b= HOW IT FITS WITH
S METHODOLOGY /
o BEST PRACTICE ADDS DESCRIPTION OF
o
- INTRINSIC VALUE? / USE & ARTIFACTS /
o INTEGRATES WITH PRACTICE / TOOL
g PROJECT MGMT? / S.M.E.s
o SUPPORTS / ENHANCES / f
ARCHITECTURE? .
g’ DISCOVERY HELPS ENABLE Proven practices
need packaging! iodi
3 - COMPANY STRATEGY? packaging’ Periodic
= HARVEST PRACTICE / TOOL < review to
) EXISTING BPs INTEGRATES W/OTHERS? avoid
e
2 INTRODUCE I staleness
NEW BPs Failed practices
MODIFY / need retooling!
ENHANCE < >

Time

Figure 3: Building your methodology one best practice at a time. As a best practice proves itself through actual
project use, you should implement a business process to “graduate” the practice into your methodology.

However you choose to implement a software development methodology, you’ll be far more successful
tackling the building blocks—best practices—one at a time. As methods are proven and elevated to best
practice status, they can be graduated into the methodology fold. Figure 3 shows how best practices
might be graduated into an SDLC methodology. (The role of the methodologist in this scenario is

discussed later.)

TIPS
®

®
®
®

Break down your software development methodology into more manageable best practices.
Master best practices first, then graduate and integrate them into the larger methodology.
Evolve your methodology by enhancing existing best practices, introducing new best practices.

Appoint stakeholders that can shepherd and maintain each best practice. Don’t overburden
one person with more best practices than they can handle; encourage organizational
participation and skills development by recruiting staff to adopt a best practice.

© 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

Myth 2: Toe the Line and Conform

If there were a single factor in a methodology failing to gain acceptance in an organization, it is the
tendency to resist conforming to a rigid dogmatic set of rules, methods and standards. | can’t tell you
how many times | have either worked for a company or consulted with clients who have dutifully shown
me the corporate IT methodology. There, ensconced on a shelf in all its glory, dressed up in custom
printed three-ring binders, would sit the holy grail of the IT organization, a lumbering volume of
specifications that documented in incredible detail every facet of specifying, designing, building, testing
and maintaining software. And depending on who would show you the goods, this introduction would
be accompanied by either an air of smug reverence (the “supporter”), or a smirk and roll of the eyes (the
“doubter”). Perhaps you’ve had a different experience, but in twenty years of working in the IT industry,
| have never encountered more supporters than doubters. Still, even today, some large organizations
insist on defining an obscenely detailed set of standards to govern the development of software. As
most of you can guess, this is a recipe for dismal failure.

Dogmatic methodologies typically fail for the same reasons, regardless of organization:

= Centralization: Large IT organizations that service large companies have a tendency to run their
business through centralized management and standards. It is not uncommon to have dedicated
process, methodology and quality groups. Publishing a corporate IT bible is a sincere attempt to get
everyone on the same page. Problems arise because the myriad business groups across the
company (often worldwide) have differing work practices, standards and IT skill levels, not to
mention cultural values. The team that takes on such an
ambitious unification effort cannot possibly consider every
cultural am?i process nuance—the methodology WOL‘J|C| take because the one-size-fits-all
four three-inch binders rather than two! The result is that approach doesn’t speak to
would-be practitioners of the methodology lose faith quickly them directly.
because the one-size-fits-all approach doesn’t speak to them
directly.

Would-be practitioners of the
methodology lose faith quickly

= Quality Through Quantity: Many a well-meaning professional thinks that achieving high quality can
be had only by documenting ad nauseum every possible step and detail of a methodology. It doesn’t
help matters that influential standards bodies like the International Standards Organization have a
legacy of publishing highly detailed treatises; the ISO 9000 quality standards are a good example.
The disconnect here is that a software methodology is not a synonym for a detailed specification. To
a greater degree, methodology must also embody the business process, the capabilities of the
organization (i.e. skill levels and experience) and the business values of the corporation. Any chef
who has tried to follow a recipe to the “T” and ends up with a disaster knows perfectly well that
cooking is more about skill and knowing your way around the kitchen, which come only from
experience, than mindlessly following instructions. Though we all hope that a software development
methodology will turn out better applications, publishing a detailed recipe without considering
organizational and process factors is not likely to help.

The “Black Car” Problem: Henry Ford’s famous quip that customers could have their Model T in any
color they wished so long as it was black revealed more than a few things about the idiosyncratic
magnate and Ford’s company culture. Scratching through the rhetoric, Ford’s black car limitation was
symptomatic of a highly regimented mass production ethos where even his unskilled workers were
considered interchangeable. Producing cars in more than one color would have added complexity, and
changes to the production system came from the top, usually Henry himself. Software methodologies

© 2005 Frontier Strategies, Inc. All rights reserved. 7

Myths of Methodology

that are centralized and rigid suffer the same “black car” problem. The most effective changes and
suggestions for improvements come from the users, those dozens or hundreds of skilled analysts and
developers who have to live the methodology every day. Users must be able to influence and be capable
of evolving the methodology based on their working experience. A lumbering centralized methodology
can’t respond to the changing requirements from the field.

TIPS

® Make it easy for methodology practitioners to provide input; encourage suggestions.

® Decentralize the management of the methodology as much as practical.

Myth 3: One Size Fits All

If you’ve been part of the IT world for the last decade or more, no doubt you’ve had some exposure to
one or more vendor software development methodologies. For companies like Computer Science
Corporation and Andersen Consulting® (and before the spin-off craze, its Big n competitors), a marquee
methodology was a must-have. If you were going after huge development projects, you had to have a
methodology to trot into the client’s boardroom. Wrapped up in gorgeous die-cut sales brochures and
backed by slick slide presentations and high-touch marketing messages, the marquee methodology
bolstered credibility and often contributed to justifying large project teams and big budgets. The
thinking of course was that following a proven methodology, honed by a world class consulting
organization working its magic in the largest Fortune 500 firms, was sound strategy and risk adverse.
Though CSC and Andersen have claimed their share of successes using marquee methodologies like
Catalyst™ and Method/1, using such methodologies are a challenge:

= Huge Body of Knowledge: Big methodologies are just that—big. Andersen would send their new
recruits off to school for six weeks to learn Method/1 and other skills. CSC has a similar program. |
worked with Andersen and CSC employees on projects in the 1990s. One problem | noticed was that
the sheer immensity of each methodology made it difficult to manage for experienced analysts, let
alone novice new-hires. It is challenge enough to keep one’s eye on the project while making sure
the work and artifacts comply with the methodology. Team members often felt they were really
working on two projects: the client initiative, plus the dozens of tasks required to comply with the
methodology.

= Scalability: The system of integrated checks and balances, those success nuggets so central to a
methodology’s marketing messages, made it very difficult to downsize Catalyst and Method/1 to
smaller projects. Burdened with the overhead of an enterprise methodology, smaller projects create
unnecessary complexity in order to comply with the process.

Recently, | participated in a software methodology assessment at a pharmaceutical research center.
Though the 110-member IT organization lacked a formal methodology, all parties agreed there was a
need for one, but that it must be flexible enough to accommodate two types of applications: (1)
enterprise-level business and scientific applications that are high-use/high-visibility; and (2) targeted,
small-scale scientific applications that might be thrown away after a few months of use by only a

2 Andersen Consulting, after divesting completely from Arthur Andersen Worldwide, is now doing business as Accenture.

8 © 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

handful of researchers. What the client correctly discovered is that methodology has to be flexible
enough so that its benefits and bother are commensurate with the scope of the business problem for
which it is being deployed. They recognized that a /ite methodology was more suitable for the
researcher’s needs whereas a more robust process was needed for the enterprise-level projects. This

makes good project management and business
sense. One user we interviewed during the
assessment put it this way: “Why use a
sledgehammer to pound a finishing nail?” It is
encouraging to see the terms heavyweight and
lightweight methodology surface in web
discussions and trade journals lately, a good
sign that companies are recognizing the need
for an approach based on right-sizing.

The Rational Unified Process (RUP) from
Rational Software Corporation is a good
example of a right-sizable methodology and
what is gelling as a de facto standard. RUP is
more a meta-SDLC methodology that can be
customized according to the project and team
requirements without losing the core benefits
of having a sound methodology. In fact,
recognizing that the full Monty version of RUP
isn’t for all organizations, Rational has
developed and is marketing an Extreme
Programming® (XP) strategy for RUP and its
modeling tools, such as Rose and XDE, even
going as far as publishing a RUP-XP plug-in.

The Development Case: Tweaking RUP

The Rational Unified Process (RUP) was designed as a meta-
methodology, one that companies can customize into a SDLC
process that fits the specific needs of their business climate and
IT culture. Rational calls such customization the development
case, and provides a web-based front-end to document the
standard unabridged RUP, as well as a means to publish the
development case.

The development case can use what Rational recommends
along the RUP lifecycle, but can also include extensions to RUP
as well as customized tools and other enablers that companies
wish to incorporate. In doing so, Rational is one of the few
commercial software vendors that have recognized that no one
methodology will satisfy all user needs.

Though the Rational Unified Process web front-end must be
purchased, the RUP itself is well documented by Rational
(www.ibm.com/software/rational/) and in the publishing industry
(Addison-Wesley has the largest collection of RUP-related
titles), and can be implemented to a great degree without
purchasing Rational’s products. Too, RUP is based on the
Unified Modeling Language (UML), a public standard promoted
by the Object Management Group (www.omg.org).

TIPS

is the use-case.

experience are the kevs.

® If you’re purchasing or adopting a formal methodology, make sure you can strip out components
and artifacts that may be overkill for medium to small projects.

® Make an earnest attempt to classify your projects by size (small, medium and large) and
complexity (easy, moderate, difficult) so you can map the best practices and components of your
methodology. One good estimating yardstick for characterizing both project size and complexity

® When developing small applications that have limited scope and lifetime, don’t sweat the details
and overhead of a heavyweight methodology. XP may be a suitable alternative. Judgment and

3
For more information on XP, visit www.extremeprogramming.org.

© 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

Myth 4: The Methodologist as MVP

Many companies make the mistake of placing too much importance or responsibility on the
methodologist position. Not that | am implying that methodologists play a minor role in organizations
implementing a methodology; it’s just that, unlike the technical architect, who has to play chief of
protocol and enforce technical standards, the methodologist’s role is more subtle. There are two basic
definitions of methodologist: (1) promoter and keeper of the methodology an organization uses and (2)
a person who conceives, designs and implements a methodology. As suggested in Myth 1, a successful IT
methodology requires mastery at the best practice level first. The methodology takes shape by
incorporating and integrating one or more best practices into a framework that can be utilized and
repeated by the organization to accomplish specific goals and produce tangible deliverables. Toward this
end, the methodologist is responsible for organizing the best practices, coordinating with working
groups, and analyzing the methods for conflicts, glitches and whatever might impede progress. But most
important, the methodologist must be a restrained evangelist. A

story might help explain the importance of restraint.

While working for Digital Equipment Corporation in the mid-
1980s, | was assigned to work with standards efforts surrounding
the Manufacturing Automation Protocol (MAP), an ambitious
industry-wide effort to standardize communications among
computers and factory floor devices, such as robots, assembly
machines and programmable logic controllers. The appointed
evangelist was the affable Chuck Gardner from Eastman Kodak in) , .

. . Figure 4: Crowning your methodologist
Rochester. As the MAP point man, Chuck had his hands full. In Most Valuable Player is usually bad
addition to promoting and managing Kodak’s internal MAP business. All methodologists can only
efforts, he chaired a large multi-company working committee, succeed through others in the
oversaw numerous ad hoc groups, and was liaison to the organization.
International Standards Organization as well as the European
MAP organization. As such, Chuck was highly visible in the MAP movement and was frequently called to
speak at conferences and in boardrooms.

You’d think such a position would have gone to Chuck’s head. Much to the contrary, he was one of the
most approachable, easy going and accommodating people I've known. Though he had an encyclopedic
mind about data communications, knew the workings of a factory inside-out, and had the ears of many
executives, he was most comfortable chit-chatting with engineers and technicians on the shop floor,
MAP’s real proving ground. Chuck advanced his agenda by listening intently, probing for answers and
suggestions, and building consensus among myriad organizations, some who directly competed against
each other. He knew that only by appealing to real-world constituents—factory employees who would
actually use the stuff—would the MAP standard have any chance of succeeding. Chuck was instrumental
in championing an extremely detailed set of technologies that were adopted worldwide.

IT methodologists would do well to emulate Chuck Gardner. Less guru and more bandleader, the
methodologist should be measured more by how the methodology is being engaged by the organization
rather than by how much air play management is giving it. Though there are obvious reasons why you
should stabilize a methodology and controls its evolution—a dozen flavors of an SDLC methodology is
not a good thing—the goods need to be evaluated, road tested, challenged and improved by the staff
members and IT project teams that do the actual work. Like Chuck Gardner, the IT methodologist has to

10 © 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

be a restrained evangelist: part diplomat, part methodology expert, part referee and part management
liaison.

TIPS
@® Methodologists don’t succeed by pushing down policy and standards, but by developing ideas
from the IT organization.

® Methodologists are more than process scientists; they are cheerleaders, diplomats and great
listeners.

® Make sure your methodologist knows he or she is a benevolent dictator working in a healthy
democracy. Policy decisions should be thought through carefully.

Myth 5: Methodology and Architecture As Fiefdoms

Many IT managers seem to lump their development methodology and architectural concerns together
under the same roof. Still others tend to do quite the opposite and direct different people or teams to
tackle each domain separately. Neither is a wise choice. Methodology and architecture are unique
disciplines that must integrate into each other’s frameworks. There is good reason, however, to appoint
both roles to one person, provided the candidate has a strong architectural background. Let’s see why.

Architects have the challenging task of defining, implementing, policing and maintaining an IT
application and execution framework. Typically (for there are as many variants of architects as there are
companies that employ them), every software and hardware asset being used in development,
maintenance and production—from development environments, to mail and web servers, to the
accounts receivable tax tables—is under the tutelage of the architect (or architecture group). Architects
concern themselves with myriad topics, such as execution and communication frameworks; languages;

Role Relationship and Typical Best Practices

METHODOLOGIST ARCHITECT

* BUSINESS MODELING < STEWARDSHIP * STANDARDS

- STANDARDS - FRAMEWORKS

- TOOL USE < RESOURCES - DESIGN PATTERNS

- REQS. MANAGEMENT - SEPARATION OF CONCERNS
- TESTING CONFORMANCE > [RLEIEE

- ANALYSIS/DESIGN PATTERNS « TRANSPARENCY

- ARCH. CONFORMANCE IMPROVEMENTS > - COMPONENT FACTORY

« C.M.M. « C.M.M.

- etc.

- etc.

Figure 5: If not the same person, which is desirable, the methodologist and architect should have co-dependent roles, with
each helping to develop and refine the other’s domain.

© 2005 Frontier Strategies, Inc. All rights reserved. 11

Myths of Methodology

naming standards; middle- and groupware; implementation strategy; plus more esoteric topics like
separation of concerns; transparency; consistency; viewpoints; reuse and patterns; component
factories; and the Software Capability Maturity Model®.

IT methodologists are no less busy though it could be argued that their domain is relatively smaller since
it is usually software development, testing and change management that is the focus. Of typical concern
to the methodologist are: business modeling; naming, modeling and code standards; role definitions
(who does what in a typical project); tool use; requirements elicitation and management; use case
design and standards; teaming and integration; testing methods and regimes; documentation standards;
definition of project artifacts’; peer reviews (design and code); and configuration management. More
esoteric pursuits include: abstraction, refactoring (what and when); structural and behavioral modeling;
scenario analysis; analysis and design patterns; facades; subsystems; delegation; evaluation and access
to reusable objects and components; architectural conformance; and the Software Capability Maturity
Model, among many others.

The fact that there are several interests that architects and methodologists share may tip you off where
some of the integration points are and why both disciplines can’t be considered strict fiefdoms. In fact, a
company’s architectural frameworks and the methodologies that help build those frameworks are co-
dependent upon one another. The methodologist must develop, structure and integrate the best
practices that make up the methodology so that it supports the frameworks established by the architect.
On the other hand, the architect must realize that a chief delivery mechanism for correction and
improvements to the architecture is the methodology (i.e. the sum of best practices) being deployed by
the development, testing and support teams. For example, n-Tier Design & Implementation (Figure 1)
has direct impact on several architectural considerations: separation of concerns, transparency (both
mentioned above), as well as partitioning and independence of technology. Another obvious example
(also from Figure 1) is Architectural Conformance Validation, a best practice that checks that the
artifacts produced by, say, the analysts and developers, comply with the various architectural
frameworks. Sure, architecture can stand alone without a formal development or testing methodology,
but it will be poorer for it since, aside from the technology that helps define an architectural framework,
it is methodology that drives innovation and quality in the overall architecture.

TIPS

® Except in the largest of organizations, assign the methodologist and architecture roles to the
same person, provided that person is a strong architect.

® Formalize the dependencies of methodology and architecture and check regularly that these
dependencies are valid.

® Ifthe roles are separate, involve your architect in methodology development and also projects.
Ask to have the methodologist participate in architecture development initiatives.

* Discussion of the Software Capability Maturity Model (SW-CMM) is out of scope for this paper. SW-CMM is developed and maintained by the
Software Engineering Institute (SEl), a federally funded research and development center sponsored by the U.S. Department of Defense and
operated by Carnegie Mellon University. For more information, visit: www.sei.cmu.edu/cmm/cmms/cmms.html.

® Project artifacts, those tangibles that are produced in the course of a development or maintenance effort, are also the project manager’s
concern.

12 © 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

Myth 6: Attending Methodology University

| am dubious about organized training on methodology because it is too tempting for a company to
build a heavyweight program that is overly formal and inflexible. For companies like Andersen, CSC,
Ernst & Young and Digital, a trip to the training center was the proven way to indoctrinate employees in
the corporate methodology. True, these firms also relied on on-the-job training (OJT) via client projects,
but Methodology U. was the first stop for new employees, especially entry-level hires. Rather,
methodology is best learned through three approaches: certainly OJT training, but also specialization
and mentoring.

OJT speaks for itself since most of you have likely learned many software tools you have used in the past
and present by clicking away and referencing help files when needed. As discussed in Myth 1,
methodology is really an organized collection of best practices. OJT learning of best practices is useful
because learners aren’t inundated with the entire methodology all at once. They can focus on, say,
Behavioral Modeling before they tackle Roundtrip Engineering. Mastery of the best practices allows the
learner to internalize the value of each practice in the context of a real project without being
overwhelmed by the larger methodology.

Specialization is merely the recognition that, in a SDLC methodology, not all best practices will need to
be mastered across the IT organization. Even with non-waterfall, iterative methodologies, such as the
Rational Unified Process, up to 33 unique roles could be staffed for a development project, though a
more practical number would be a third of that. It is not necessary for a business analyst to master the
best practice Pair-Programming just as it wouldn’t be critical for developers to be requirements experts.
While knowledge of the whole process of producing software applications is desirable, you should
expect that people will be inclined to specialize in one or more best practices.

Mentoring is an invaluable tool that too many companies trivialize or ignore altogether. Working hand-
in-hand with a person who has mastered a best practice is a valuable experience because it promotes
knowledge transfer far more effectively than in the training room. The problem isn’t just training. In
order to learn a new way of working individuals require an approach where they have regular direct
access to a resource to help them through the snafus. The mentor also serves as change agent since it is
he or she who will be introducing best practices into the project environment.

A final thought on the value of learning methodology through OJT, specialization and mentoring.
Because best practices and their enablers evolve, and consequently methodology does as well, it is quite
difficult to maintain an organized training program. Training development is expensive, time-consuming
and usually lags behind the introduction of the topical matter (whether it’s a new software application
or a set of methods). New practices and improved methods can be announced and put into play quickly
using OJT and appropriate mentoring from the team that introduced the enhancements.

TIPS

® Avoid developing and delivering formal classroom training for your methodology.

® Employ on-the-job training and mentoring to learn and master the best practices that comprise
your methodology.

® Recognize that specialization is a natural learning paradigm and that few, if any, IT staffers will
master the entire methodology. Encourage mastery of the best practices that fit the role each
person is playing in a project.

© 2005 Frontier Strategies, Inc. All rights reserved. 13

Myths of Methodology

Myth 7: Stifling Creativity

While conducting a methodology and best practices review for a client last year, one common refrain we
heard in our interviews was that a formal methodology would strangle the developer’s creativity in
designing, coding and implementing applications. Right or wrong, many felt that the “rules of conduct,”
as one interviewee jokingly referred to methodology, would hinder innovation and cause undo
complexity in building systems. While heavyweight methodologies that are cumbersome to use might be
guilty of stifling creativity, a right-sized, flexible methodology based on best practices will not only not
repress ingenuity, it is likely to improve it.

The opinions formed by our client weren’t unusual or novel. Many
developers want a free hand in their work and most associate
design, coding and architectural standards as unnecessary PRESENTATION

roadblocks. Unfortunately, some assume that formal naming SERVICES
standards, the ordering of tasks and modeling techniques, to name BUS'NSESR%EEQTEXT

three perceived components of methodology, means that their
BUSINESS RULE

days as crafters of a great design or code are over. Actually, it SERVICES
couldn’t be further from the truth. There are two reasons for this: DATA TRANSLATION
o . . SERVICES
= Reason 1: Methodology helps focus creativity on high business
DATA ACCESS
value. SERVICES
. DATABASE
Methodology exists to make software development a repeatable SERVICES
process. Repeatability has some obvious benefits: reduced time to
delivery; lower maintenance costs; faster adoption of new best Figure 6: N-tier architectural pattern

practice; and faster training ramp-up of new employees. However, (in this case, 6-tier) promotes
one additional benefit is that it also aligns the IT organization with separation of concerns and helps

| P . channel creativity into execution
the business of the company.’ This is important because it helps layers that map more readily with
stem IT innovation that adds only marginal value, what | term individual skill sets.
commodity creativity, and instead focuses IT professionals on what
will truly benefit the core business of the company. Project team members should no longer be flustered
that best practices such as Architecture Conformance Validation or Unified Change Management check
their freedom and imagination. What such best practices do—particularly these two—is remove some
of the tedious decisions that managers, designers and developers have to make when they’re engaged
in a development project. Project contributors are then left to focus more intently on solutions that add

more business value and less behind-the-scenes structure.

Still, some of our client interviewees were unmoved: “Why do we need to conform to standards when
our window of opportunity is short and we need to cobble together a quick and dirty application? We
need the flexibility to be creative.” Exactly! This is where right-sizing your methodology is important. If
you need to develop an application that will be used short-term and has limited exposure, why
complicate matters with a heavyweight methodology or even any methodology? If it’s throwaway code,
who cares? Allow your application developers complete freedom to create what they need for the

® Only a small percentage of North American businesses actually produce software as their primary product; the majority of companies are
goods and service providers and their IT organization (whether internal or contracted) plays a supporting role.

14 © 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

short-term business at hand, which will add value without suffocating creativity. Just be sure that what
is being built won’t have an adverse impact on other efforts or your enterprise architecture.

= Reason 2: Emerging software development paradigms and architectural frameworks provide a
foundation for methodology innovation.

One positive development over the last ten years has been the concept of identifying, developing and
exploiting patterns in application development. A pattern is merely a proven method or construct that
solves a specific problem in a project. As such there are analysis patterns, design patterns and
architectural patterns that are gaining popularity with IT practitioners who don’t wish to recreate the
wheel. Methodology patterns also exist. The basic premise of patterns is that when a group of elements
is reduced to its most basic and elegant form, which add value to solving a problem, then a recognized
pattern emerges. Establishing patterns are a natural defense against project teams spinning their
creative wheels on commodity problems that have already been solved. Again, this helps focus creative
minds on what is higher value-add to the core business.

Similarly, trends in IT architecture help define best practices that channel opportunities for creativity
where they will have the most impact to the business and, in some cases, the supporting technical
infrastructure. As just discussed, N-tier Design and Implementation can be considered both a best
practice and an architectural pattern. N-tier allows the architect to establish creativity zones along the
business layers or technical support layers of the architecture. (It also allows IT management to organize
staff along business lines or in technical support roles.) As Figure 6 shows, the business context and
business rule service layers are two creativity zones that project analysts and designers can focus on.
Instead of debating how to implement transaction management, the team can be focused on, say,
finding business rule patterns. N-tier would also focus technical experts in the lower persistence layers
(Data Access Services and Database Services) to develop more innovative service capabilities.

Other architecture practices, such as transparency, consistency and reuse, also help pave the way
toward creative thinking and innovation.

TIPS

@ Use best practices and your overall methodology to help you channel your staff’s creativity away
from low value problems and toward high-value or high-risk problems.

@® Challenge your staff to associate creativity with solving critical business and technical problems,
not just elegant code streams or quick-and-dirty fixes.

® Recognize that right-sizing your methodology also contributes to innovation and creativity. Don’t
strangle ingenuity with a heavyweight methodology.

® Exploit the paradigm of analysis, design and architectural patterns to help channel creativity
toward unsolved problems and new, undiscovered patterns.

© 2005 Frontier Strategies, Inc. All rights reserved. 15

Myths of Methodology

Myth 8: Wasting Away in Methodologyville

Is methodology a waste of time? To introduce this section, an unscientific comparison of people and
society is in order. Methodology can be loosely compared to a society’s laws and community standards.
Laws and community standards help promote societal values, a code of conduct that the society will
tolerate, and a sense of organization and security. A side benefit is that organized societies with a
system of laws tend to be more productive and even more innovative.

In much the same manner, an IT methodology helps
promote the values of the business society—the IT
organization and its customers, the business users—and
it also provides a framework that helps organize work
and produce artifacts that help deliver the applications
and systems the users need. Though this may be a leap
of faith for the reader, except for the most radical of
thinkers, laws and community standards are not wasteful
endeavors but instead serve the common good of the
society that enacts them. So goes methodology. For
societies of IT teams and the users they serve, a
methodology that helps steer IT initiatives in the right
direction is probably good. While smaller societies may [

stand a better chance of governing themselves without

the constraints of a formal methodology, some system of ~ Figure 7: Methodologists must recognize that
methods or standards usually gels in even the smallest of Zﬁ;’;ﬁ';;’;i;zg,r/;g::”g;:’;j’;ﬁ;g:jgfj;and
teams. This is the primary reason Extreme Programming teamwork. ’

(XP) works so well with small teams. It’s not that the XP

methodology is so innovative or unique; it’s just that it exploits the inherent productivity gains of small
groups of workers (pairs, in the XP case).

At Digital, one simple exercise we used to request of our clients, usually at the onset of a software
project, was to have the people we were meeting with draw their business process. Though most people
could readily describe how the division or department worked, it was always surprising how much
disparity there was between people’s views. At one client, despite the fact that two people worked
together every day, the quality manager gave a significantly different account of the production process
than the line supervisor. There were usually two culprits at work here: (1) internalization of the process
(“How do [interact with the business process?”) causing disjointed views, and (2) the lack of a clear,
concise and published business process. Both symptoms gave our team pause. If our clients didn’t have
an accurate grasp on their business, their vision for the project might also be skewed. In these cases, we
usually took time to gain consensus on what the business processes were before we ventured into
gathering business requirements and proceeding with the project.

IT organizations should ascribe the same level of importance when looking at their business processes
and, ultimately, their SDLC methodology. It is time well spent to examine the business strategy of the
company as a whole and then the IT organization’s business strategy so a vision for an SDLC
methodology can be formulated. It is time well spent to examine the organization’s core competencies
and legacy best practices that can be candidates for inclusion into a broader SDLC methodology. In fact,

16 © 2005 Frontier Strategies, Inc. All rights reserved.

Myths of Methodology

it may be valuable to take the time to come up with a methodology development and deployment
process, a sort of methodology to discover and promote your SDLC methodology!

Time invested thinking up front about what methodology and best practices can buy your organization
will pay dividends later, usually in the form of better responsiveness to your customers, lower
maintenance costs and faster time to market for your services and deliverables. And unless you take the
time to analyze and prove why a right-sized methodology is good for business, you’ll be missing the
opportunity to establish a societal framework that will help promote innovation, teamwork,
understanding and performance.

TIPS

® Tuake the time to examine your IT organization’s business processes to make sure they support
the company’s goals and strategy. Only then can you begin to examine your core competencies,
best practices and a formal SDLC methodology.

® Recognize that developing and evolving a methodology takes time and it’s everyone’s business.

® Look at developing a methodology development and deployment process, one that will help you
discover and promote your SDLC methodology.

© 2005 Frontier Strategies, Inc. All rights reserved. 17

Myths of Methodology

About the Author

Dan Drislane is the founder of Frontier Strategies, Inc. in Livingston, Montana, an IT consulting firm
begun in 1991 in Michigan. He has over 20 years of experience in business analysis, business process
analysis and project management. Dan’s work with clients focuses on two goals: transforming the IT
organization’s culture so it will be more agile and accountable to business; and integrating an
organization’s vision and supporting business processes with its enterprise business and system
architecture.

18 © 2005 Frontier Strategies, Inc. All rights reserved.

